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Introduction

Introduction

In our treatment of linear and multiple regression algebra, we have, so far, relied on the
most traditional algebraic approach.
This began, in the case of simple bivariate linear regression, by presenting the data for n
observations on two variables X and Y as points plotted in a plane.
This approach is of course quite useful, but another quite different approach has also
proven extremely useful.
In the sample, this approach involves presenting variables as vectors plotted in the
n-dimensional “data space.”
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Introduction

A Variable as a Vector

For example, suppose n = 3 and the variable y1 has the values y ′1 = (4,−1, 3). The
variable y2 has values yW ′2 = (1, 3, 5).
We can plot them in 3-dimensional space as shown on the next slide, taken from Johnson
and Wichern (2002).
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Introduction

A Variable as a Vector
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Introduction

A Variable as a Vector
A Vectorspace and its Basis

Recall the operations of scalar multiplication and vector addition as already defined.
Recall also that a set of vectors is linearly independent if and only if no vector is a linear
combination of the others.
Now consider a set of linearly independent vectors x1, x2, . . . k . They are said to be basis
vectors that span a k-dimensional vectorspace.
The vectorspace itself is defined as the set of all linear combinations of its basis vectors.
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Introduction

A Variable as a Vector
Length of a Vector

As an extension of the Pythagorean Theorem, the Euclidean length of a vector, denoted
||x||, is the square root of the sum of squares of its elements, i.e.,

||x|| =
√
x′x (1)
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Introduction

A Variable as a Vector
Angle Between Two Vectors

The cosine of the angle θ between two vectors x and y satisfies the equation

cos(θx,y) =
x′y√

x′x
√
y′y

(2)

Conversely, the scalar product of two vectors can be computed as

x′y = ||x||||y|| cos(θx,y) (3)
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Introduction

A Variable as a Vector
Relationship between Correlation and Angle

Equation 2 on the preceding slide shows some intimate connections between statistics and
geometry.
Suppose that both x and y are in deviation score form. Since the variance of X is then
x′x/(n − 1) and the covariance between x and y is x′y/(n − 1), the following facts
immediately follow:

1 The lengths of a group of deviation score vectors in n − 1 dimensional space are directly
proportional to their standard deviations.

2 The correlation between any two deviation score vectors in n − 1 dimensional space is equal
to the cosine of the angle between them.
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Projection and Least Squares Estimation

Projection and Least Squares Estimation
Properties of Projectors

Projection is a key concept in geometry.
The projection or shadow of a vector y on another vector x is defined as

xx′

x′x
y = Pxy (4)

As we prove in Homework 01, for a vector x, the orthogonal projector Px = x(x′x−1)x′

and its complementary projector Qx = I− Px have a number of key properties, most of
which trace back to the following:

Px = Px
′ = P2

x

Qx = Qx
′ = Q2

x

PxQx = 0

Pxx = x, Qxx = 0
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Projection and Least Squares Estimation

Projection and Least Squares Estimation
Properties of Projectors

The key point of the homework assignment is that Px and Qx can be used to decompose
a vector y into two component vectors that are orthogonal to each other, with one
component collinear with x and the other orthogonal to it.
Specifically, for any y, define

ŷ = Pxy, e = Qxy (5)

Clearly ŷ is collinear with x, since

Pxy = x
(
x′x
)−1

x′y = xb (6)

with

b =
x′y

x′x
(7)
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Projection and Least Squares Estimation

Projection and Least Squares Estimation
Properties of Projectors

It also follows that
y = ŷ + e (8)

since

ŷ + e = Pxy + Qxy

= Pxy + (I− Pxy)

= (Px + I− Px)y

= Iy = y (9)

and that
e′ŷ = 0 (10)
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Projection and Least Squares Estimation

Projection and Least Squares Estimation
Column Space Projectors

Now consider an X of full column rank with more than one column. Similar results to the
preceding ones can be established, as follows:
We define the column space of X, Sp(X), as the set of all linear combinations of the
columns of X, that is, a vectorspace with the columns of X as its basis.
The column space orthogonal projector Px and its complementary projector Qx are
defined essentially the same as before, i.e.

PX = X
(
X′X

)−1
X′

and
QX = I− PX
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Projection and Least Squares Estimation

Projection and Least Squares Estimation
Column Space Projectors

Now for any matrix Y, the columns of

Ŷ = PXY

are in the column space of X, since

Ŷ = X
{(

X′X
)−1

X′Y
}

(11)

= XB (12)

Moreover, as before, we can define E = QxY and establish results analogous to those in
Equations 8–10.
Just as we say that Px projects any vector into Sp(X), Qx projects any vector into
Sp(X)⊥, the orthogonal complement to Sp(X).
These results are central in linear regression.
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Demos in 3D

Demos in 3D

Let’s digress and examine the geometry of statistics with an active demonstration in
n = 3 dimensions.
Although being stuck in 3 dimensions constrains our ability to visualize, many of the
concepts become clearer.
Create a working directory. Download the files GeometrySupport.R and
GeometryDemos.R to it from the website. startup R, and make sure that the rgl and
geometry packages are installed.
If they are not, please download them and install them.
Then, open the file GeometryDemos.R in RStudio, and set the working directory to where
this file is located.
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The Determinant as Generalized Variance

The Determinant as Generalized Variance

In our 3D demo, we saw how two vectors can be thought of as defining a parallelogram.
We have also pointed out that the length of a vector of deviation scores is equal to√
n − 1 times its standard deviation, so that the length of a deviation score vector is

directly proportional to the standard deviation of the variable it represents.
It turns out that, just as the square root of the variance of a single variable is proportional
to its length, the square root of the determinant of the covariance matrix of a pair of
variables is directly proportional to the area of the parallelogram they “carve out” in
deviation score space.
Here is a picture from Johnson and Wichern.
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The Determinant as Generalized Variance

The Determinant as Generalized Variance
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The Determinant as Generalized Variance

The Determinant as Generalized Variance

If S is a 2× 2 matrix, it is well known that

|S| = s11s22 − s21s12 = s11s22 − s212

.
But since

s12 = r12
√
s11s22

we have
|S| = s11s22(1− r212)
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The Determinant as Generalized Variance

The Determinant as Generalized Variance

But since the area of the parallelogram is Ld1 × Height, and (recalling that
sin2 θ + cos2 θ = 1)

Height = Ld1 sin θ = Ld1

√
1− r2

we have

Area = Ld1Ld2

√
1− r2 = (n − 1)

√
s11s22(1− r2)

Consequently,
Area2 = (n − 1)2|S|

and
Area = (n − 1)|S|1/2

James H. Steiger (Vanderbilt University) Some Geometrical Considerations 19 / 20



The Determinant as Generalized Variance

The Determinant as Generalized Variance

More generally, as proven by T.W. Anderson in his classic textbook on multivariate
analysis, with p variables the relationship is

Volume2 = (n − 1)p|S|

So |S|1/2 is the multivariate analog of the standard deviation, and the determinant is a
multivariate analog of variance.
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