Some Geometrical Considerations

James H. Steiger
Department of Psychology and Human Development
Vanderbilt University

Some Geometrical Considerations

(1) Introduction
(2) Projection and Least Squares Estimation
(3) Demos in 3D

Introduction

- In our treatment of linear and multiple regression algebra, we have, so far, relied on the most traditional algebraic approach.
- This began, in the case of simple bivariate linear regression, by presenting the data for n observations on two variables X and Y as points plotted in a plane.
- This approach is of course quite useful, but another quite different approach has also proven extremely useful.
- In the sample, this approach involves presenting variables as vectors plotted in the n-dimensional "data space."

A Variable as a Vector

- For example, suppose $n=3$ and the variable y_{1} has the values $y_{1}^{\prime}=(4,-1,3)$. The variable y_{2} has values $y^{W} / I_{2}=(1,3,5)$.
- We can plot them in 3-dimensional space as shown on the next slide, taken from Johnson and Wichern (2002).

A Variable as a Vector

A Variable as a Vector

A Vectorspace and its Basis

- Recall the operations of scalar multiplication and vector addition as already defined.
- Recall also that a set of vectors is linearly independent if and only if no vector is a linear combination of the others.
- Now consider a set of linearly independent vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots k$. They are said to be basis vectors that span a k-dimensional vectorspace.
- The vectorspace itself is defined as the set of all linear combinations of its basis vectors.

A Variable as a Vector

Length of a Vector

- As an extension of the Pythagorean Theorem, the Euclidean length of a vector, denoted $\|\mathbf{x}\|$, is the square root of the sum of squares of its elements, i.e.,

$$
\begin{equation*}
\|\mathbf{x}\|=\sqrt{\mathbf{x}^{\prime} \mathbf{x}} \tag{1}
\end{equation*}
$$

A Variable as a Vector

Angle Between Two Vectors

- The cosine of the angle θ between two vectors \mathbf{x} and \mathbf{y} satisfies the equation

$$
\begin{equation*}
\cos \left(\theta_{\mathbf{x}, \mathbf{y}}\right)=\frac{\mathbf{x}^{\prime} \mathbf{y}}{\sqrt{\mathbf{x}^{\prime} \mathbf{x}} \sqrt{\mathbf{y}^{\prime} \mathbf{y}}} \tag{2}
\end{equation*}
$$

- Conversely, the scalar product of two vectors can be computed as

$$
\begin{equation*}
\mathbf{x}^{\prime} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \left(\theta_{\mathbf{x}, \mathbf{y}}\right) \tag{3}
\end{equation*}
$$

A Variable as a Vector

Relationship between Correlation and Angle

- Equation 2 on the preceding slide shows some intimate connections between statistics and geometry.
- Suppose that both \mathbf{x} and \mathbf{y} are in deviation score form. Since the variance of X is then $\mathbf{x}^{\prime} \mathbf{x} /(n-1)$ and the covariance between \mathbf{x} and \mathbf{y} is $\mathbf{x}^{\prime} \mathbf{y} /(n-1)$, the following facts immediately follow:
(1) The lengths of a group of deviation score vectors in $n-1$ dimensional space are directly proportional to their standard deviations.
(2) The correlation between any two deviation score vectors in $n-1$ dimensional space is equal to the cosine of the angle between them.

Projection and Least Squares Estimation

Properties of Projectors

- Projection is a key concept in geometry.
- The projection or shadow of a vector \mathbf{y} on another vector \mathbf{x} is defined as

$$
\begin{equation*}
\frac{x x^{\prime}}{x^{\prime} x} y=P_{x y} \tag{4}
\end{equation*}
$$

- As we prove in Homework 01, for a vector \mathbf{x}, the orthogonal projector $\mathbf{P}_{\mathbf{x}}=\mathbf{x}\left(\mathbf{x}^{\prime} \mathbf{x}^{-1}\right) \mathbf{x}^{\prime}$ and its complementary projector $\mathbf{Q}_{\mathbf{x}}=\mathbf{I}-\mathbf{P}_{\mathbf{x}}$ have a number of key properties, most of which trace back to the following:

$$
\begin{gathered}
\mathbf{P}_{\mathbf{x}}=\mathbf{P}_{\mathbf{x}}^{\prime}=\mathbf{P}_{\mathbf{x}}^{2} \\
\mathbf{Q}_{\mathbf{x}}=\mathbf{Q}_{\mathbf{x}}^{\prime}=\mathbf{Q}_{\mathbf{x}}^{2} \\
\mathbf{P}_{\mathbf{x}} \mathbf{Q}_{\mathbf{x}}=\mathbf{0} \\
\mathbf{P}_{\mathbf{x}} \mathbf{x}=\mathbf{x}, \mathbf{Q}_{\mathbf{x}} \mathbf{x}=\mathbf{0}
\end{gathered}
$$

Projection and Least Squares Estimation

Properties of Projectors

- The key point of the homework assignment is that $\mathbf{P}_{\mathbf{x}}$ and $\mathbf{Q}_{\mathbf{x}}$ can be used to decompose a vector \mathbf{y} into two component vectors that are orthogonal to each other, with one component collinear with \mathbf{x} and the other orthogonal to it.
- Specifically, for any \mathbf{y}, define

$$
\begin{equation*}
\hat{\mathbf{y}}=\mathbf{P}_{\mathrm{x}} \mathbf{y}, \mathbf{e}=\mathbf{Q}_{\mathrm{x}} \mathbf{y} \tag{5}
\end{equation*}
$$

- Clearly $\hat{\mathbf{y}}$ is collinear with \mathbf{x}, since

$$
\begin{equation*}
\mathbf{P}_{\mathbf{x}} \mathbf{y}=\mathbf{x}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} \mathbf{x}^{\prime} \mathbf{y}=\mathbf{x} b \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
b=\frac{\mathbf{x}^{\prime} \mathbf{y}}{\mathbf{x}^{\prime} \mathbf{x}} \tag{7}
\end{equation*}
$$

Projection and Least Squares Estimation

Properties of Projectors

- It also follows that

$$
\begin{equation*}
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{e} \tag{8}
\end{equation*}
$$

since

$$
\begin{align*}
\hat{\mathbf{y}}+\mathbf{e} & =\mathbf{P}_{\mathbf{x}} \mathbf{y}+\mathbf{Q}_{\mathbf{x}} \mathbf{y} \\
& =\mathbf{P}_{\mathbf{x}} \mathbf{y}+\left(\mathbf{I}-\mathbf{P}_{\mathbf{x}} \mathbf{y}\right) \\
& =\left(\mathbf{P}_{\mathbf{x}}+\mathbf{I}-\mathbf{P}_{\mathbf{x}}\right) \mathbf{y} \\
& =\mathbf{l} \mathbf{y}=\mathbf{y} \tag{9}
\end{align*}
$$

and that

$$
\begin{equation*}
\mathbf{e}^{\prime} \hat{\mathbf{y}}=0 \tag{10}
\end{equation*}
$$

Projection and Least Squares Estimation

Column Space Projectors

- Now consider an \mathbf{X} of full column rank with more than one column. Similar results to the preceding ones can be established, as follows:
- We define the column space of $\mathbf{X}, \operatorname{Sp}(\mathbf{X})$, as the set of all linear combinations of the columns of \mathbf{X}, that is, a vectorspace with the columns of \mathbf{X} as its basis.
- The column space orthogonal projector $\mathbf{P}_{\mathbf{x}}$ and its complementary projector $\mathbf{Q}_{\mathbf{x}}$ are defined essentially the same as before, i.e.

$$
\mathbf{P}_{\mathbf{x}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}
$$

and

$$
\mathbf{Q}_{\mathbf{X}}=\mathbf{I}-\mathbf{P}_{\mathbf{x}}
$$

Projection and Least Squares Estimation

Column Space Projectors

- Now for any matrix \mathbf{Y}, the columns of

$$
\hat{\mathbf{Y}}=\mathbf{P}_{\mathbf{X}} \mathbf{Y}
$$

are in the column space of \mathbf{X}, since

$$
\begin{align*}
\hat{\mathbf{Y}} & =\mathbf{X}\left\{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}\right\} \tag{11}\\
& =\mathbf{X B} \tag{12}
\end{align*}
$$

Moreover, as before, we can define $\mathbf{E}=\mathbf{Q}_{\mathbf{x}} \mathbf{Y}$ and establish results analogous to those in Equations 8-10.

- Just as we say that $\mathbf{P}_{\mathbf{x}}$ projects any vector into $\operatorname{Sp}(\mathbf{X}), \mathbf{Q}_{\mathbf{x}}$ projects any vector into $\operatorname{Sp}(\mathbf{X})^{\perp}$, the orthogonal complement to $\operatorname{Sp}(\mathbf{X})$.
- These results are central in linear regression.

Demos in 3D

- Let's digress and examine the geometry of statistics with an active demonstration in $n=3$ dimensions.
- Although being stuck in 3 dimensions constrains our ability to visualize, many of the concepts become clearer.
- Create a working directory. Download the files GeometrySupport. R and GeometryDemos. R to it from the website. startup R, and make sure that the rgl and geometry packages are installed.
- If they are not, please download them and install them.
- Then, open the file GeometryDemos.R in RStudio, and set the working directory to where this file is located.

The Determinant as Generalized Variance

- In our 3D demo, we saw how two vectors can be thought of as defining a parallelogram.
- We have also pointed out that the length of a vector of deviation scores is equal to $\sqrt{n-1}$ times its standard deviation, so that the length of a deviation score vector is directly proportional to the standard deviation of the variable it represents.
- It turns out that, just as the square root of the variance of a single variable is proportional to its length, the square root of the determinant of the covariance matrix of a pair of variables is directly proportional to the area of the parallelogram they "carve out" in deviation score space.
- Here is a picture from Johnson and Wichern.

The Determinant as Generalized Variance

The Determinant as Generalized Variance

- If \mathbf{S} is a 2×2 matrix, it is well known that

$$
|\mathbf{S}|=s_{11} s_{22}-s_{21} s 12=s_{11} s_{22}-s^{2} 12
$$

- But since

$$
s_{12}=r_{12} \sqrt{s_{1} 1 s_{2} 2}
$$

we have

$$
|\mathbf{S}|=s_{11} s_{22}\left(1-r_{12}^{2}\right)
$$

The Determinant as Generalized Variance

- But since the area of the parallelogram is $L_{d_{1}} \times$ Height, and (recalling that $\sin ^{2} \theta+\cos ^{2} \theta=1$)

$$
\text { Height }=L_{d_{1}} \sin \theta=L_{d_{1}} \sqrt{1-r^{2}}
$$

we have

$$
\text { Area }=L_{d_{1}} L_{d_{2}} \sqrt{1-r^{2}}=(n-1) \sqrt{s_{11} s_{22}\left(1-r^{2}\right)}
$$

- Consequently,

$$
\text { Area }^{2}=(n-1)^{2}|\mathbf{S}|
$$

and

$$
\text { Area }=(n-1)|\mathbf{S}|^{1 / 2}
$$

The Determinant as Generalized Variance

- More generally, as proven by T.W. Anderson in his classic textbook on multivariate analysis, with p variables the relationship is

$$
\text { Volume }^{2}=(n-1)^{p}|\mathbf{S}|
$$

- So $|\mathbf{S}|^{1 / 2}$ is the multivariate analog of the standard deviation, and the determinant is a multivariate analog of variance.

